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Before we start, we need to review some basic properties of moment generating functions.

1 Reviews of Moment Generating Function

Moment generating function can give us a representation of all the moments.

Definition 1.1 (Moment Generating Function). The moment generating function (MGF) of a
random variable X is defined as:
Mx(t) = E[e™]

if the expectation exists for ¢ in some neighborhood of 0.

Remark 1.1. The MGF of X does not always exist. However, if it exists, then Mx(t) is
continuously differentiable in some neighborhood of the origin.

1.1 Some properties of MGFs

Fact 1.1. If X and Y are independent random variables with MGFs Mx (t) and My (t), then
the MGF of X +Y is given by:

Mx 4y (t) = Mx (t) My (t)

Fact 1.2. If X has MGF Mx(t), then the MGF of aX + b is given by:

MaX+b(t) = €thX (at)

Fact 1.3. The derivative of the mgf at ¢ = 0 gives us moments.




Theorem 1.1 (Uniqueness of MGF). Let X and Y be random variables with MGFs Mx (t) and
My (t). Suppose their mgfs, Mx (t) and My (t), both exist and are equal for all t in the interval
(h <t < h) for some h > 0. Then X and Y have the same distribution, say Fx(-) = Fy (-).

Theorem 1.2. Let X1, Xs,..., X, be a sequence of random variables with MGFs
Mx, (t)’ Mx, (t)v s Mx, (t)

Let X be a random variable with MGF Mx (t).

If for all t in an open interval around 0 we have

Mx, (t) = Mx(t) as n — oo,

then X,, ~ X. i.e, the limiting distribution of X,, is equal to the distribution of X. (convergence
in distribution, converge weakly, converge in law)

Fact 1.4 (MGF of Normal Distribution). If X ~ N(u,0?), then the MGF of X is given by:

o242
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MX (t) = €‘ut+

Remark 1.2. The MGF of a standard normal distribution Z ~ N(0,1) is Mz(t) = e

Remark 1.3. If we use taylor expansion for etX

terms of the moments of X;

, we obtain the series expansion of Mx(t) in

Mx(t) = E[ ax J=> —E(X*) = > ﬁﬂé (1.1)
i=0 i=0 i=0

2 Central Limit Theorem

The central limit theorem(CLT) is one of the most important theorems in statistics. Roughly
speaking, it gives us an approximate distribution of an average without any distributional assump-
tion(other than independence and finite mean and variances).



Theorem 2.1 (Central Limit Theorem). Let X1, Xs,..., X, be a sequence of independent ran-
dom wvariables with mean . and variance o%. Assume that the mgf E[e!X¢] is finite for t in a
neighborhood around 0. Let X = %Z?:l X, be the sample mean. Let

_ X
NG

Then the distribution of Z,, converges to the standard normal distribution Z ~ N(0,1) asn — oo.
i.e, Zn ~ Z. Hence, as n — oo,

Zn

(2.1)

P(Z, < t) — B(t) (2.2)

where ®(t) = [*

— 00

1,2
\/%e*Td:c is the cumulative distribution function of the standard normal
distribution.

Remark 2.1. The most general version of the CLT does not require any assumption about the
mgf. The classic proofs use characteristic functions.

Example 2.1 (Confidence interval for the unknown mean and known variance). We would like to
construct a confidence interval for the unknown mean g with known variance o2 X1,Xo,..., Xn
are iid random variables. /i = X is the sample mean.

We would like to find a random set C' such that

PlueC)>1—-a. (2.3)

Take
C=la—1ta+t. (2.4)

Then
P(ieC)=P(i—t<p< it (2.5)
Pl VR (17 < Y (2.6)



where Z ~ N(0,1). Let ®(t) be the cdf of Z. Then define
2a =011 - @) (2.7)

where &1 is the inverse of ®. We know that

P(Z > 2q/2) = P(Z < —24/2) = /2 (2.8)

Therefore,

t
ﬂ = Z% (2.9)
o

Therefore,

t =27 (2.10)
vn '
Therefore,

g

Vn

C=[ii—28—=,fi+ 25 —] (2.11)

Nk

is a confidence interval for y with confidence level 1 — a.

3 Lyapnov Central Limit Theorem

Suppose X7, Xo, ..., X, are independent but not identically distributed. Let X; ~ (i, 03]

Definition 3.1 (Lyapnov Condition). The sequence {X;} satisfies the Lyapnov condition if

Z[E|7M|2+‘S — 0 for some & > 0, where s2 := Zaf (3.1)
s
i=1

i=1 n

Theorem 3.1 (Lyapnov Central Limit Theorem). If the sequence {X;} satisfies the Lyapnov

condition, then
n

=3 (X~ ) = N(O,1) (32

=1
Remark 3.1. When § = 1, then the Lyapnov condition becomes

L
lim — > EIX — il =o0. (3.3)
n =1

n— oo

Remark 3.2 (Interpretation of the Lyapnov condition). The Lyapnov condition
1 n
5
5 D EIXi — ™ = 0
no=1

means that, after scaling by the natural variance scale s2 = > o7, the tail contribution of each
summand is negligible.

- Easy sufficient conditions:

1) Uniformly bounded (2 + §)-moments: sup; E|X; — ;)T < oo;

2) No dominant variance: max; o7 /s2 — 0.

Then Y, E|X; — p3|?*% = O(n) while 5279 >> n, hence the ratio — 0.

- When it fails: a few terms with variances comparable to s2 or with very heavy tails can
violate the condition; then a single summand can drive the limit and the normal approximation
may fail.




4 Multivariate Central Limit Theorem

We may extend the CLT to the multivariate case.

Theorem 4.1 (Multivariate Central Limit Theorem). Let X1, Xs,..., X, be a sequence of inde-
pendent random variables with mean p € R? and covariance matriz ¥ € R4, Let i = % X
be the sample mean. Then

Vit = 1)~ Na(0,5). (4.1)

5 CLT with Estimated Variance

Sometimes we may not know the variance of the random variables, but we can estimate it from
the data.

0n? = ! > (X — i) (5.1)

n—1

If we replace 02 with 62, we still have the CLT.

Theorem 5.1. Let X1, X5, ..., X, be a sequence of independent random variables with mean p
and variance 0. Let o,> = = 37 (X, — 1), Then
VDI N(0,1). (5.2)
On

6 Berry-Esseen Theorem

The quality of the CLT:



Theorem 6.1 (Berry-Esseen). If {X;} are i.i.d. with EX; =0, Var(X;) = 0% > 0, and E| X;|> =
p3 < 00, then with Z, = Z;;Jyfi,

P3
sup |P(Z, <t) —®(t)| < C ———,
up [P(Z, <1) - 2(0)] < C 2

where C is a positive constant.
Remark 6.1 (Value of C). Calculated upper bounds on the constant C' have decreased markedly

over the years, from the original value of 7.59 by Esseen in 1942. Numbers like 9, 1, 0.8, 0.56,
0.4748 all appear in the literature; theyre all valid bounds with varying sharpness.

7 Delta Method

The delta method is a technique for approximating the distribution of a function of a random
variable.

Theorem 7.1 (Delta Method). Suppose

Vn(Xn — )

g

~ N(0,1) (7.1)

and g is a continuously differentiable function such that g'(p) # 0. Then

V(9(Xn) — g(w)) — N

(0,9'()?) (7.2)

Example 7.1 (Univariate: g(r) = exp(z)). Suppose we have X1,..., X,, ~ P with E[X] = p,
Var(X) = 02 < oo and let i, = X. Consider Y,, = exp(fi,,). Since ¢'(u) = exp(u), by the Delta
method,

i exp(ﬂn)a— exp(p) N (0, exp(2u)).

Theorem 7.2 (Multivariate Delta Method). Suppose we have random vectors Xy,..., X, € R%,
and g : R? — R is a continuously differentiable function, then

v (9(Xn) — g(u)) ~ N(0,7°)
where X, =n~1Y", X;,
2 =V,.(9)"ZV,(9))




and

(97:@ T=p

is the gradient of g evaluated at L.
Proof. By the multivariate CLT, v/n(X,, — u) ~ Ng(0,%). By Taylor’s expansion,
Q(Xn) —g(p) = Vg(,an)T(Xn — ),

for some random fi,, on the line segment between X,, and p. Since X,, 25 1 and Vg is continuous at
1, we have Vg(fin) 2> V(). Hence

Vi(g(Xn) = g(w) = Vg(jin) V(X — p) ~ Vu(9)' Z,

where Z ~ Ny(0,%). The limit is univariate normal with variance V,(g)7XV,(g) = 72. Slutsky’s
theorem justifies replacing Vg(fin) by V,(g) in the limit. O

Example 7.2 (Multivariate: product g(z1,z2) = 901322). Let X; = (X;1, X;2) have mean p =

(11, o) and covariance matrix .. The CLT gives v/n(X,, — ) ~ Ng(0,%). For g(x1,32) = x172,
we have Vg(x1,22) = (z2,71)7, so Vg(p) = (pa, 11)T. Therefore,

Vi (X1 Xa — pupg) ~ N(0, 72), 7 = (p2, 1) S (2, ).

8 Stocahstic Order Notation

Deterministic o and O notations

Notation Definition Intuitive meaning

apn, = o(by) \a—n\ —0asn— o0 ay, goes to 0 faster than b,

an = O(by) EI]’\LL st.1(|lan/bn| > M) =0V large n  a, /by, is bounded eventually

an < by an, = O(b,) and b, = O(ay,) a, and b, are of the same order

Stochastic o and O notations

Notation Definition Intuitive meaning
X
X0 = 0p(An) |A—n| Roasn— oo X,, B 0 faster than A,
n

Xn
Xn =0,(4,) Ve>03M, s.t.[P<|A—| > M) <eVlargen X,/A, is bounded in probability eventually

Example 8.1. Let X;, Xo,..., X, be iid random variables with finite variance. Define g =
LS . Xi. Then
fi— = 0p(1) (8.1)

fi— i = 0,(1/Vn) (8.2)

Proposition 8.1. Let {X, }nen and {Y, }nen be two sequences of random variables. Let a,, be
a sequence of real numbers.

1. If X, = Op(1) and Y, = O,(1), then X, +Y,, = O,(1).
2. If X,, = 0,(1) and Y,, = 0,(1), then X, +Y, = 0p(1).
3. If X, = 0p(1) and Y,, = Op(1), then X,, +Y,, = Op(1).




4. If X, = 0,(1) and Y, = O, (1), then X,,Y;, = 0,(1).
5. If Xn = Op(1), then 0p(X,) = 0,(1).

6. If X = 0p(an), then X, = anop(1).

7. If X = O,(an), then X, = anOp(1).
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Appendix

The appendix includes something that do not cover in the course materials but would be useful
for understanding.

Characteristic Functions

In this section, we introduce the classical tool of proving distributional approximations via char-
acteristic functions.

Definition 8.1. The characteristic function (ch.f.) of a random variable X is defined to be
ox(t) := Ee™ = Ecos(tX) +i- Esin(tX).

Properties.

L ox(0)=1, lex ()| < 1.

2. px(—t) = px(t). (conjugate)

3. lex(t+h) — ox(t)] < Ele"™ —1] — 0, as h — 0. (by DCT). That is, ¢x(t) is uniformly
continuous.

4. pax4p(t) = eitb(pX (at).

5. If X is independent of X5, then ¢x, 1 x,(t) = ¢x, (t)px, (t).

Theorem 8.2. If E(X?) < oo, then
t2
ox(t) =144 tE(X)— EE(XQ) +o(t?), ast — 0.

Proof. By Taylor’s expansion,

. . i X)2 .
px(t) = Ee*X =1+ EiXe”X|t:0 “t+ E%e”xhzo -2 + error,
where
lerror| < CE [(t|X]) A (£°X?)] (8.3)
= CHE [(t|X])* A (X?)]
=o(t?), ast — 0
by DCT. O

Proof of CLT without assumption of mgf

Using characteristic functions, we now give the second proof of the CLT.

Theorem 8.3. Let Xi,X5,... be a sequence of i.i.d. random wvariables such that EX; =
w, Var(X;) = 2. Let

" P ovn

Then
Wy, ~ Z ~ N(0,1).

10



. 42
Proof. N.T.S. Ee''Wr — e~ for all t € R. We have, by the expression of W,, and independence,

: (X p Xp = p T i (X )
Ee”W’”:Eexp<zt( ! + ))ZHE@W i (8.6)
ovn av/n i
= ot t2 5 t2
= H [1 + ZEE(XJ- — ) — EE(Xj - +o (n)} (from Theorem 8.3)  (8.7)
j=1

t? 2\1"
ot (t 8.8
2n to (n )] (88)
—e V2 (8.9)
O

Lindeberg condition and Lindeberg—Feller Central Limit Theorem

Theorem 8.4 (The Lindeberg-Feller Theorem). Assume for each n, &n1,&n2, - - -, Enn are inde-
pendent with E&,; =0 for alli and EY - &2, =1. If

Ve > 0, Zngtil{‘ﬁni|>E} — 0, (Lindeberg’s Condition)
i=1

then

3 ni ~ N(0,1).

i=1

Proof of the Lindeberg-Feller theorem. Let

On(t) = Bett 2i=18ni,

We have
on(t) = [ B (8.10)
i=1
n ‘ t2 )
=11~ [1 +itni — 5 i FOPE e, 150)) + O(t3|£ni|31{|5m§8}):| (8.11)
i=1
n t2
“11 [1 DB+ O(PEE A o) + 0<t3Esm-|3>] (8.12)
i=1
n t2
= e 7 =2, (8.13)
i=1
where we used Lemma: Let z1,..., 2, and wy,...,w, be complex numbers with |z;| < 1,|w;| < 1 for
all 5. Then

n n
=1 =1

n
< Z |2i — wy.
i=1
0

Remark 8.1. CLT for i.i.d. sequence is a corollary of the above theorem: For X;, Xo, ..., i.i.d.
with EX; = u, Var(X;) = o2. Consider &,; = )s’\/_ﬁ“ and W, := 3" | &,;. It can be checked by
DCT that the Lindeberg condition is satisfied and hence CLT. Then the Lindeberg condition is:

11



Definition 8.2 (Lindeberg condition). Let Xj,..., X, be independent (not necessarily
identical) with means y; and variances o7, and let s2 := Y7 | 02. The Lindeberg condition

holds if for every € > 0,

1
)
STL

-

i=1

and the theorem is:

Theorem 8.5 (Lindeberg—Feller Central Limit Theorem). Under the Lindeberg condition,

we have
1 n
— Y (Xi — ) ~ N(0,1).

s
" oi=1

In particular, Lyapnov’s condition implies Lindeberg’s, hence also the conclusion above.

Proof of the Lyapnov Central Limit Theorem. Set Yy; = X;—pu;. Note EY,,; =0 and Y Var(Y,;) =
s2. Tt suffices to show the Lindeberg condition and then apply the Lindeberg—Feller CLT to S, /sp.
Fix € > 0. By Markov’s inequality, for any ¢,

|Yni | 2+

Y2{|Vy] > 50} < s

Taking expectations and summing, we get

n

1

§2
S'IL

2 . 1 - 1246

by the Lyapnov condition. Hence the Lindeberg condition holds.
By the Lindeberg—Feller CLT, we conclude

(X ) N(0,1),

i=1

Remark 8.2. Implication: Lyapnov = Lindeberg. For any € > 0,

E|X; — pi*T

E[(X; — wi)® 1{|X; — pi| > esn}] < (€sp)®

so dividing by s2 and summing gives Lindeberg — 0.

Proof of Berry-Esseen
Proof of Berry-Esseen. Let ¢,(u) = Ee™?" be the characteristic function (CF) of Z,, and ¢(u) =
e=%"/2 that of N(0,1). By Taylor expansion of Ee?“X1/(ev?) and independence,

3
Xu
o

2 n wl®
eaw) = (1= 5 + Raw/n'/?)",  |Rs(o)] < 4 E

Hence for all real u,
ul> E[X > 24
lon (1) — ()] < &1 e/
N

b

o3

for some absolute constant ¢;. By Esseen’s smoothing lemma, for any 7" > 0,

1T Jon(u) — o(u)| co
sup |P(Z, <t) —®(t)| < — I T du 4 —=,
wlP(Z, < -a) < 1 [ Feli T

12



where co is absolute. Using the previous bound and integrating, we get

[E|X1|3 2 2
up |P(Z, <t)—®(t)| < ec: T+ —.
Stp‘ ( —) ()|—c3 3\/ﬁ T

Optimizing over T = n'/% yields

£l X, [*
o3ymn’

sup [P(Z, <t) —@(t)| < C
t

as claimed.
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