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Before we start, we need to review some basic properties of moment generating functions.

1 Reviews of Moment Generating Function
Moment generating function can give us a representation of all the moments.

Definition 1.1 (Moment Generating Function). The moment generating function (MGF) of a
random variable X is defined as:

MX(t) = E[etX ]

if the expectation exists for t in some neighborhood of 0.

Remark 1.1. The MGF of X does not always exist. However, if it exists, then MX(t) is
continuously differentiable in some neighborhood of the origin.

1.1 Some properties of MGFs

Fact 1.1. If X and Y are independent random variables with MGFs MX(t) and MY (t), then
the MGF of X + Y is given by:

MX+Y (t) = MX(t)MY (t)

Proof

Fact 1.2. If X has MGF MX(t), then the MGF of aX + b is given by:

MaX+b(t) = ebtMX(at)

Proof

Fact 1.3. The derivative of the mgf at t = 0 gives us moments.
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Proof

Theorem 1.1 (Uniqueness of MGF). Let X and Y be random variables with MGFs MX(t) and
MY (t). Suppose their mgfs, MX(t) and MY (t), both exist and are equal for all t in the interval
(h < t < h) for some h > 0. Then X and Y have the same distribution, say FX(·) = FY (·).

Theorem 1.2. Let X1, X2, . . . , Xn be a sequence of random variables with MGFs
MX1

(t),MX2
(t), . . . ,MXn

(t).
Let X be a random variable with MGF MX(t).
If for all t in an open interval around 0 we have

MXn
(t) → MX(t) as n → ∞,

then Xn ⇝ X. i.e, the limiting distribution of Xn is equal to the distribution of X. (convergence
in distribution, converge weakly, converge in law)

Fact 1.4 (MGF of Normal Distribution). If X ∼ N(µ, σ2), then the MGF of X is given by:

MX(t) = eµt+
σ2t2

2

Proof

Remark 1.2. The MGF of a standard normal distribution Z ∼ N(0, 1) is MZ(t) = e
t2

2 .

Remark 1.3. If we use taylor expansion for etX , we obtain the series expansion of MX(t) in
terms of the moments of X;

MX(t) = E[
∞∑
i=0

ti

i!
Xi] =

∞∑
i=0

ti

i!
E(Xi) =

∞∑
i=0

ti

i!
µ′
i (1.1)

2 Central Limit Theorem
The central limit theorem(CLT) is one of the most important theorems in statistics. Roughly

speaking, it gives us an approximate distribution of an average without any distributional assump-
tion(other than independence and finite mean and variances).
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Theorem 2.1 (Central Limit Theorem). Let X1, X2, . . . , Xn be a sequence of independent ran-
dom variables with mean µ and variance σ2. Assume that the mgf E[etXi ] is finite for t in a
neighborhood around 0. Let X̄ = 1

n

∑n
i=1 Xi be the sample mean. Let

Zn =
X̄ − µ

σ/
√
n

(2.1)

Then the distribution of Zn converges to the standard normal distribution Z ∼ N(0, 1) as n → ∞.
i.e, Zn ⇝ Z. Hence, as n → ∞,

P(Zn ≤ t) → Φ(t) (2.2)

where Φ(t) =
∫ t

−∞
1√
2π

e−
x2

2 dx is the cumulative distribution function of the standard normal
distribution.

Proof

Remark 2.1. The most general version of the CLT does not require any assumption about the
mgf. The classic proofs use characteristic functions.

Example 2.1 (Confidence interval for the unknown mean and known variance). We would like to
construct a confidence interval for the unknown mean µ with known variance σ2. X1, X2, . . . , Xn

are iid random variables. µ̂ = X̄ is the sample mean.
We would like to find a random set C such that

P(µ ∈ C) ≥ 1− α. (2.3)

Take
C = [µ̂− t, µ̂+ t]. (2.4)

Then
P(µ ∈ C) = P(µ̂− t ≤ µ ≤ µ̂+ t) (2.5)

P(

√
n|µ̂− µ|

σ
≤

√
nt

σ
) ≈ P(|Z| ≤

√
nt

σ
) (2.6)
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where Z ∼ N(0, 1). Let Φ(t) be the cdf of Z. Then define

zα = Φ−1(1− α) (2.7)

where Φ−1 is the inverse of Φ. We know that

P(Z > zα/2) = P(Z < −zα/2) = α/2 (2.8)

Therefore, √
nt

σ
= zα

2
(2.9)

Therefore,
t =

zα
2
σ

√
n

(2.10)

Therefore,
C = [µ̂− zα

2

σ√
n
, µ̂+ zα

2

σ√
n
] (2.11)

is a confidence interval for µ with confidence level 1− α.

3 Lyapnov Central Limit Theorem
Suppose X1, X2, . . . , Xn are independent but not identically distributed. Let Xi

iid∼ [µi, σ
2
i ].

Definition 3.1 (Lyapnov Condition). The sequence {Xi} satisfies the Lyapnov condition if

n∑
i=1

E|Xi − µi

sn
|2+δ → 0 for some δ > 0, where s2n :=

n∑
i=1

σ2
i (3.1)

Theorem 3.1 (Lyapnov Central Limit Theorem). If the sequence {Xi} satisfies the Lyapnov
condition, then

1

sn

n∑
i=1

(Xi − µi)⇝ N(0, 1) (3.2)

Remark 3.1. When δ = 1, then the Lyapnov condition becomes

lim
n→∞

1

s3n

n∑
i=1

E|Xi − µi|3 = 0. (3.3)

Remark 3.2 (Interpretation of the Lyapnov condition). The Lyapnov condition

1

s2+δ
n

n∑
i=1

E|Xi − µi|2+δ → 0

means that, after scaling by the natural variance scale s2n =
∑

i σ
2
i , the tail contribution of each

summand is negligible.
- Easy sufficient conditions:
1) Uniformly bounded (2 + δ)-moments: supi E|Xi − µi|2+δ < ∞;
2) No dominant variance: maxi σ

2
i /s

2
n → 0.

Then
∑

i E|Xi − µi|2+δ = O(n) while s2+δ
n � n, hence the ratio → 0.

- When it fails: a few terms with variances comparable to s2n or with very heavy tails can
violate the condition; then a single summand can drive the limit and the normal approximation
may fail.
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4 Multivariate Central Limit Theorem
We may extend the CLT to the multivariate case.

Theorem 4.1 (Multivariate Central Limit Theorem). Let X1, X2, . . . , Xn be a sequence of inde-
pendent random variables with mean µ ∈ Rd and covariance matrix Σ ∈ Rd×d. Let µ̂ = 1

n

∑n
i=1 Xi

be the sample mean. Then √
n(µ̂− µ)⇝ Nd(0,Σ). (4.1)

Proof

5 CLT with Estimated Variance
Sometimes we may not know the variance of the random variables, but we can estimate it from

the data.

σ̂n
2 =

1

n− 1

n∑
i=1

(Xi − µ̂)2. (5.1)

If we replace σ2 with σ̂2, we still have the CLT.

Theorem 5.1. Let X1, X2, . . . , Xn be a sequence of independent random variables with mean µ
and variance σ2. Let σ̂n

2 = 1
n−1

∑n
i=1(Xi − µ̂)2. Then
√
n(µ̂− µ)

σ̂n
⇝ N(0, 1). (5.2)

Proof

6 Berry-Esseen Theorem
The quality of the CLT:
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Theorem 6.1 (Berry–Esseen). If {Xi} are i.i.d. with EXi = 0, Var(Xi) = σ2 > 0, and E|Xi|3 =

ρ3 < ∞, then with Zn =
∑n

i=1 Xi

σ
√
n

,

sup
t∈R

∣∣P(Zn ≤ t)− Φ(t)
∣∣ ≤ C

ρ3
σ3

√
n
,

where C is a positive constant.

Remark 6.1 (Value of C). Calculated upper bounds on the constant C have decreased markedly
over the years, from the original value of 7.59 by Esseen in 1942. Numbers like 9, 1, 0.8, 0.56,
0.4748 all appear in the literature; theyre all valid bounds with varying sharpness.

7 Delta Method
The delta method is a technique for approximating the distribution of a function of a random

variable.

Theorem 7.1 (Delta Method). Suppose
√
n(Xn − µ)

σ
⇝ N(0, 1) (7.1)

and g is a continuously differentiable function such that g′(µ) 6= 0. Then
√
n(g(Xn)− g(µ))

σ
⇝ N(0, g′(µ)2) (7.2)

Proof

Example 7.1 (Univariate: g(x) = exp(x)). Suppose we have X1, . . . , Xn ∼ P with E[X] = µ,
Var(X) = σ2 < ∞ and let µ̂n = X̄. Consider Yn = exp(µ̂n). Since g′(µ) = exp(µ), by the Delta
method,

√
n
exp(µ̂n)− exp(µ)

σ
⇝ N

(
0, exp(2µ)

)
.

Theorem 7.2 (Multivariate Delta Method). Suppose we have random vectors X1, . . . , Xn ∈ Rd,
and g : Rd 7→ R is a continuously differentiable function, then

√
n (g(X̄n)− g(µ))⇝ N(0, τ2)

where X̄n = n−1
∑

i Xi,
τ2 = ∇µ(g)

TΣ∇µ(g))
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and

∇µ(g) =


∂g(x)
∂x1

...
∂g(x)
∂xd


x=µ

is the gradient of g evaluated at µ.

Proof. By the multivariate CLT,
√
n(X̄n − µ)⇝ Nd(0,Σ). By Taylor’s expansion,

g(X̄n)− g(µ) = ∇g(µ̃n)
T (X̄n − µ),

for some random µ̃n on the line segment between X̄n and µ. Since X̄n
pr→ µ and ∇g is continuous at

µ, we have ∇g(µ̃n)
pr→ ∇g(µ). Hence

√
n(g(X̄n)− g(µ)) = ∇g(µ̃n)

T
√
n(X̄n − µ)⇝ ∇µ(g)

TZ,

where Z ∼ Nd(0,Σ). The limit is univariate normal with variance ∇µ(g)
TΣ∇µ(g) = τ2. Slutsky’s

theorem justifies replacing ∇g(µ̃n) by ∇µ(g) in the limit.

Example 7.2 (Multivariate: product g(x1, x2) = x1x2). Let Xi = (Xi1, Xi2) have mean µ =
(µ1, µ2) and covariance matrix Σ. The CLT gives

√
n(X̄n−µ)⇝ Nd(0,Σ). For g(x1, x2) = x1x2,

we have ∇g(x1, x2) = (x2, x1)
T , so ∇g(µ) = (µ2, µ1)

T . Therefore,
√
n (X̄1X̄2 − µ1µ2) ⇝ N

(
0, τ2

)
, τ2 = (µ2, µ1)

TΣ(µ2, µ1).

8 Stocahstic Order Notation
Deterministic o and O notations

Notation Definition Intuitive meaning

an = o(bn) |an
bn

| → 0 as n → ∞ an goes to 0 faster than bn

an = O(bn) ∃M, s.t.1(|an/bn| > M) = 0 ∀ large n an/bn is bounded eventually
an � bn an = O(bn) and bn = O(an) an and bn are of the same order

Stochastic o and O notations

Notation Definition Intuitive meaning

Xn = op(An) |Xn

An
| pr→ 0 as n → ∞ Xn

pr→ 0 faster than An

Xn = Op(An) ∀ ε > 0 ∃M, s.t.P
(
|Xn

An
| > M

)
< ε ∀ large n Xn/An is bounded in probability eventually

Example 8.1. Let X1, X2, . . . , Xn be iid random variables with finite variance. Define µ̂ =
1
n

∑n
i=1 Xi. Then

µ̂− µ = op(1) (8.1)

µ̂− µ = Op(1/
√
n) (8.2)

Proposition 8.1. Let {Xn}n∈N and {Yn}n∈N be two sequences of random variables. Let an be
a sequence of real numbers.

1. If Xn = Op(1) and Yn = Op(1), then Xn + Yn = Op(1).

2. If Xn = op(1) and Yn = op(1), then Xn + Yn = op(1).

3. If Xn = op(1) and Yn = Op(1), then Xn + Yn = Op(1).
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4. If Xn = op(1) and Yn = Op(1), then XnYn = op(1).

5. If Xn = Op(1), then op(Xn) = op(1).

6. If Xn = op(an), then Xn = anop(1).

7. If Xn = Op(an), then Xn = anOp(1).

8



Acknowledgement
When I prepared this document, I referred to the following resources:

• BIOS 8004 Advacned Statistical Theory, CityUHK

• STAT 4003 Statistical Inference, CUHK

• STAT 5010 Advanced Statistical Inference, CUHK

• STAT 5005 Advanced Probability Theory, CUHK

• https://en.wikipedia.org/wiki/Berry%E2%80%93Esseen_theorem

• http://parker.ad.siu.edu/Olive/lsch3.pdf

9

https://en.wikipedia.org/wiki/Berry%E2%80%93Esseen_theorem
http://parker.ad.siu.edu/Olive/lsch3.pdf


Appendix
The appendix includes something that do not cover in the course materials but would be useful

for understanding.

Characteristic Functions
In this section, we introduce the classical tool of proving distributional approximations via char-

acteristic functions.

Definition 8.1. The characteristic function (ch.f.) of a random variable X is defined to be

φX(t) := EeitX = E cos(tX) + i · E sin(tX).

Properties.

1. φX(0) = 1, |φX(t)| ≤ 1.

2. φX(−t) = φX(t). (conjugate)

3. |φX(t + h) − φX(t)| ≤ E|eihX − 1| → 0, as h → 0. (by DCT). That is, φX(t) is uniformly
continuous.

4. φaX+b(t) = eitbφX(at).

5. If X1 is independent of X2, then φX1+X2
(t) = φX1

(t)φX2
(t).

Theorem 8.2. If E(X2) < ∞, then

φX(t) = 1 + i · tE(X)− t2

2
E(X2) + o(t2), as t → 0.

Proof. By Taylor’s expansion,

φX(t) = EeitX = 1 + EiXeitX |t=0 · t+ E
(iX)2

2
eitX |t=0 · t2 + error,

where

|error| ≤ CE
[
(t|X|)3 ∧ (t2X2)

]
(8.3)

= Ct2E
[
(t|X|)3 ∧ (X2)

]
(8.4)

= o(t2), as t → 0 (8.5)

by DCT.

Proof of CLT without assumption of mgf
Using characteristic functions, we now give the second proof of the CLT.

Theorem 8.3. Let X1, X2, . . . be a sequence of i.i.d. random variables such that EXi =
µ,Var(Xi) = σ2. Let

Wn =

n∑
i=1

Xi − µ

σ
√
n

.

Then
Wn ⇝ Z ∼ N(0, 1).
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Proof. N.T.S. EeitWn → e−
t2

2 for all t ∈ R. We have, by the expression of Wn and independence,

EeitWn = E exp

(
it

(
X1 − µ

σ
√
n

+ · · ·+ Xn − µ

σ
√
n

))
=

n∏
j=1

Ee
i t√

n
(Xj−µ) (8.6)

=

n∏
j=1

[
1 + i

t

σ
√
n
E(Xj − µ)− t2

2σ2n
E(Xj − µ)2 + o

(
t2

n

)]
(from Theorem 8.3) (8.7)

=

[
1− t2

2n
+ o

(
t2

n

)]n
(8.8)

→ e−t2/2. (8.9)

Lindeberg condition and Lindeberg–Feller Central Limit Theorem

Theorem 8.4 (The Lindeberg-Feller Theorem). Assume for each n, ξn1, ξn2, . . . , ξnn are inde-
pendent with Eξni = 0 for all i and E

∑n
i=1 ξ

2
ni = 1. If

∀ε > 0,

n∑
i=1

Eξ2ni1{|ξni|>ε} → 0, (Lindeberg’s Condition)

then
n∑

i=1

ξni ⇝ N(0, 1).

Proof of the Lindeberg-Feller theorem. Let

φn(t) = Eeit
∑n

i=1 ξni .

We have

φn(t) =

n∏
i=1

Eeitξni (8.10)

=

n∏
i=1

E

[
1 + itξni −

t2

2
ξ2ni +O(t2ξ2ni1{|ξni|>ε}) +O(t3|ξni|31{|ξni|≤ε})

]
(8.11)

=

n∏
i=1

[
1− t2

2
Eξ2ni +O(t2Eξ2ni1{|ξni|>ε}) +O(t3E|ξni|3)

]
(8.12)

→
n∏

i=1

e−
t2

2 Eξ2ni = e−t2/2, (8.13)

where we used Lemma: Let z1, . . . , zn and w1, . . . , wn be complex numbers with |zi| ≤ 1, |wi| ≤ 1 for
all i. Then ∣∣∣∣∣

n∏
i=1

zi −
n∏

i=1

wi

∣∣∣∣∣ ≤
n∑

i=1

|zi − wi|.

Remark 8.1. CLT for i.i.d. sequence is a corollary of the above theorem: For X1, X2, . . ., i.i.d.
with EXi = µ, Var(Xi) = σ2. Consider ξni =

Xi−µ
σ
√
n

and Wn :=
∑n

i=1 ξni. It can be checked by
DCT that the Lindeberg condition is satisfied and hence CLT. Then the Lindeberg condition is:
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Definition 8.2 (Lindeberg condition). Let X1, . . . , Xn be independent (not necessarily
identical) with means µi and variances σ2

i , and let s2n :=
∑n

i=1 σ
2
i . The Lindeberg condition

holds if for every ε > 0,

1

s2n

n∑
i=1

E
[
(Xi − µi)

2 1{|Xi − µi| > εsn}
]
−−−−→
n→∞

0.

and the theorem is:

Theorem 8.5 (Lindeberg–Feller Central Limit Theorem). Under the Lindeberg condition,
we have

1

sn

n∑
i=1

(Xi − µi) ⇝ N(0, 1).

In particular, Lyapnov’s condition implies Lindeberg’s, hence also the conclusion above.

Proof of the Lyapnov Central Limit Theorem. Set Yni = Xi−µi. Note EYni = 0 and
∑n

i=1 Var(Yni) =
s2n. It suffices to show the Lindeberg condition and then apply the Lindeberg–Feller CLT to Sn/sn.

Fix ε > 0. By Markov’s inequality, for any i,

Y 2
ni1{|Yni| > εsn} ≤ |Yni|2+δ

(εsn)δ
.

Taking expectations and summing, we get

1

s2n

n∑
i=1

E
[
Y 2
ni1{|Yni| > εsn}

]
≤ 1

εδs2+δ
n

n∑
i=1

E|Yni|2+δ −−−−→
n→∞

0,

by the Lyapnov condition. Hence the Lindeberg condition holds.
By the Lindeberg–Feller CLT, we conclude

1

sn

n∑
i=1

(Xi − µi)⇝ N(0, 1).

Remark 8.2. Implication: Lyapnov ⇒ Lindeberg. For any ε > 0,

E
[
(Xi − µi)

2 1{|Xi − µi| > εsn}
]
≤ E|Xi − µi|2+δ

(εsn)δ
,

so dividing by s2n and summing gives Lindeberg → 0.

Proof of Berry-Esseen
Proof of Berry–Esseen. Let φn(u) = EeiuZn be the characteristic function (CF) of Zn and φ(u) =

e−u2/2 that of N(0, 1). By Taylor expansion of EeiuX1/(σ
√
n) and independence,

φn(u) =
(
1− u2

2n +R3(u/n
1/2)

)n

, |R3(v)| ≤ |u|3
6n3/2 E

∣∣∣X1

σ

∣∣∣3.
Hence for all real u,

|φn(u)− φ(u)| ≤ c1
|u|3√
n

E|X1|3

σ3
e−u2/4,

for some absolute constant c1. By Esseen’s smoothing lemma, for any T > 0,

sup
t

|P(Zn ≤ t)− Φ(t)| ≤ 1

π

∫ T

−T

|φn(u)− φ(u)|
|u|

du+
c2
T
,
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where c2 is absolute. Using the previous bound and integrating, we get

sup
t

|P(Zn ≤ t)− Φ(t)| ≤ c3
E|X1|3

σ3
√
n

T 2 +
c2
T
.

Optimizing over T � n1/6 yields

sup
t

|P(Zn ≤ t)− Φ(t)| ≤ C
E|X1|3

σ3
√
n
,

as claimed.
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