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Introduction

Motivation

Suppose we are interested in estimating the sharing of genetic effects across
different conditions (e.g., assessing the effects of many expression
quantitative trait loci (eQTLs) across many tissues).
Simplest way: analyzing each condition separately. But it would fail to
exploit the sharing or similarity of effects across conditions.
Motivates consideration of multivariate approaches to multiple testing and
effect size estimation.
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Introduction

Background: Empirical Bayes Framework-mash

Goal: Eestimates effects of many units (n) in many conditions (R)
Model Settings:

Let xj ∈ RR be the observed vectors
Let θj ∈ RR be the true vectors
Likelihood: xj | θj ,V j ∼ NR(θj ,V j), j = 1, . . . , n

Prior: θj ∼
∑K

k=1

∑L
l=1 πk,lN(0, ωlUk), where π ∈ SK ⊆ RK(

K-dimensional simplex) is the set of mixture proportions , ωl is a scaling
coefficient corresponds to a different effect size, U := {U1, . . . ,UK} denotes
the full collection of covariance matrices.

jiahuiren8-c (@my.cityu.edu.hk) City University of Hong Kong Journal Club Presentation 2025.11 4 / 54



Introduction

Background: mash framework

MASH is desgined to
1 Estimate π and U by maximizing the likelihood of the observed data

a Estimate U by maximum-likelihood on a subset of the data (using Exteme
Deconvolution algorithm)

b Estimate π by maximizing the likelihood from all the data (using fast
optimization algorithms)

2 Compute posterior distribution p(θj |xj , π̂, Û ,V j)

However, in the first step that estimates U , several challenges were presented.

jiahuiren8-c (@my.cityu.edu.hk) City University of Hong Kong Journal Club Presentation 2025.11 5 / 54



Introduction

mash limitations

1 The Extreme Deconvolution (ED) algorithm can be slow to converge
2 The results ot ED are often sensitive to initalization
3 The estimated covariance matrices can be quite unstable when R is large

relative to n

Therefore, the authors proposed a new method called ”Truncated Eigenvalue
Decomposition” (TED) and use some regularization schemes(penalty function)
to improve the estimation of U , and TED also converges much faster than ED.
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Introduction

Preliminaries: Reformulation

Scale invariance requires

θ̂j(sx1, . . . , sxn, s
2V 1, . . . , s

2V n) = s θ̂j(x1, . . . ,xn, V 1, . . . ,V n).

for the penalty function, it is required that ρ̃(U) = ρ̃(sU) for any s > 0, therefore
consider:

ρ̃(U) = min
s>0

ρ(U/s)

for any s > 0.
The penalty function ρ̃(U) is designed to penalize the ”shape” rather than
”scale” of the covariance matrices.
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Introduction

The Empirical Bayes Multivariate Normal Means
Model(EBMNM)

Observed vectors: xj ∈ RR are independent, noisy, normally-distributed
measurements of underlying true values θj ∈ RR

xj | θj ∼ NR(θj ,V j), j = 1, . . . , n (1)

, where V j ∈ P+
R is assumed to be known and invertible.

Assume the unknown means are independen and identically distributed draws
from a mixtrue of zero-mean multivariate normals:

θj ∼
K∑

k=1

πkNR(θj ; 0,Uk) (2)

, where π ∈ SK ⊆ RK( K-dimensional simplex) is the set of mixture
proportions , U := {U1, . . . ,UK} denotes the full collection of covariance
matrices. The ω are absorbed in the Uk because the penalty function is scale
invariant.
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Introduction

The Empirical Bayes Multivariate Normal Means
Model(EBMNM)

If V j = V for all j = 1, . . . , n, we refer this as the ”homoscedastic” case.
If V j ̸= V for some j = 1, . . . , n, we refer this as the ”heteroscedastic”
case.
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Introduction

The Empirical Bayes Multivariate Normal Means
Model(EBMNM)

The marginal distribution of xj is:

p(xj |π,U) =
K∑

k=1

πkNR(xj ; 0,Uk + V j) (3)

And the log-likelihood is:

ℓ(π,U) =
n∑

j=1

log
(

K∑
k=1

πkNR(xj ; 0,Uk + V j)

)
(4)
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Introduction

The Empirical Bayes Multivariate Normal Means
Model(EBMNM)

The EB approach fitting the model in two stages:
1 Estimate π and U by maximizing a penalized log-likelihood:

(π̂, Û) := arg max
π∈SK ,U∈P+,k

R ,s>0

(
ℓ(π,U)−

K∑
k=1

ρ̃(Uk/sk)

)
(5)

2 Compute posterior distribution

ppost(θj) := p(θj |xj , π̂, Û) ∝ p(xj |θj)p(θj |π̂, Û) (6)
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Penalty Function
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Penalty Function

Penalty Function
Two different penalties that have been previously used for covariance
regularization:

1 The ”inverse Wishart” (IW) penalty:

ρIW
λ (U) :=

λ

2
{log |U |+ tr(U−1)}

=
λ

2

R∑
i=1

(log er + 1/er)

(7)

2 The ”nuclear norm” (NN) penalty:

ρNN
λ (U) := λ{0.5||U ||∗ + 0.5||U−1||∗}

=
λ

2

R∑
i=1

(0.5ei + 0.5/ei)
(8)

where ei are the eigenvalues of U and U−1, and ||.||∗ is the nuclear norm,
λ > 0 controls the strength of the penalty.
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Constraints

Constraints

As an alternative to penalized estimation of U , the authors also consider
estimating U under different constraints:

1 A scaling constraint: Uk = ckU0k, for some chosen U0k ∈ P+
R

2 A rank-1 constraint: Uk = uku
T
k , for some uk ∈ RR

jiahuiren8-c (@my.cityu.edu.hk) City University of Hong Kong Journal Club Presentation 2025.11 15 / 54



Introduction to TED, FA and ED

Introduction to TED, FA and ED
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Introduction to TED, FA and ED

A simpler case for K=1 and no penalty

For easily to understanding the three methods, we consider the simpler case for
K=1 and no penalty.

When K = 1, the prior is: θj ∼ NR(θj ; 0,U), the model is:

xj |U ∼ NR(0,U + V j), j = 1, . . . , n (9)

Goal: compute the maximum likelihood estimate of U :

Û := arg max
U∈P+

R

n∑
j=1

logNR(0,U + V j) (10)
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Introduction to TED, FA and ED

Truncated Eigenvalue Decomposition (TED)
Special case: homoscedastic noise V j = IR.
Sample covariance:

S :=
1

n

n∑
j=1

xjx
T
j .

Naive idea Û = S − IR may not be PSD.
TED sets negative eigenvalues of (S − IR) to zero:

Û = (S − IR)+.

General case V j = V (constant across j): whiten

V = RRT, x̃j = R−1xj , R−1xj |θj ∼ NR(R
−1θj , I +R−1UR)

Apply TED to x̃j to get Û ′ and then back-transform

Û = RÛ
′
RT.
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Introduction to TED, FA and ED

Extreme Deconvolution (ED)

EM algorithm for the K=1 model using data augmentation:

θj ∼ NR(0,U), xj | θj ∼ NR(θj ,V j).

E-step: posterior mean and covariance of θj given current U :

bj := U(U + V j)
−1xj , Bj := U −U(U + V j)

−1U .

M-step: update covariance

Unew =
1

n

n∑
j=1

(
Bj + bjb

T
j

)
.

Guarantees monotone ascent of the likelihood and convergence to a
stationary point.
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Introduction to TED, FA and ED

Factor Analysis (FA)

Rank-1 constraint on covariance: U = uuT with u ∈ RR.
Data augmentation:

aj ∼ N(0, 1), xj | u,V j , aj ∼ NR(aj u, V j).

EM updates:

µj := σ2
j u

TV −1
j xj , σ2

j :=
1

1 + uTV −1
j u

,

unew =

 n∑
j=1

(µ2
j + σ2

j )V
−1
j

−1 n∑
j=1

µj V
−1
j xj

 .
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Extend to General Case with K>1 and penalty

Derivation of the EM algorithm for fitting the EBMNM
model

First, they introduce a latent variable zj for each j = 1, . . . , n. Each zj is a
binary vector of length K indicating the component k from which xj arose.
Following Neal and Hinton (1998), the expected value of zjk is:

ωjk := E[zjk] =
πkNR(0,Uk + V j)∑K
l=1 πlNR(0,U l + V j)

(11)

The M-step for π:

π̂k =
1

n

n∑
j=1

ωjk (12)
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Extend to General Case with K>1 and penalty

TED without penalty
Special case V j = IR ; define weighted covariance

Ŝ :=

n∑
j=1

w̃j xjx
T
j , w̃j :=

wj

w̄
, w̄ =

n∑
i=1

wi.

Objective (dropping U -independent terms):

ϕ(U ;w) = − w̄

2

{
log |U + I|+ tr

[
(U + I)−1Ŝ

]}
.

Closed-form solution:
Û = (Ŝ − I)+.

If Ŝ = L diag(d1, . . . , dR)LT then

Û = L diag
(

max{dr − 1, 0}
)R
r=1

LT.

If V j = V ̸= I (constant), whiten x̃j = R−1xj with V = RRT, apply the
above on x̃j , then back-transform.
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Extend to General Case with K>1 and penalty

TED with penalty

For IW/NN penalties there is no closed form, use the numerical method:
With separable penalty ρ(U/s) =

∑R
r=1 ρr(er/s), write

Ŝ = L diag(d1, . . . , dR)LT.
Optimize eigenvalues independently:

êr = arg max
er≥0

− w̄

2

[
log(er + 1) +

dr
er + 1

]
− ρr(er/s).

Update
Û = L diag(ê1, . . . , êR)LT.
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Extend to General Case with K>1 and penalty

ED without penalty

Weighted complete-data objective:

ϕED(U ,Θ;w) =

n∑
j=1

wj log p(xj ,θj | U ,V j).

E-step (posterior of θj given current U):

bj = U(U + V j)
−1xj , Bj = U −U(U + V j)

−1U .

M-step (closed form, no penalty). With normalized weights
w̃j :=

wj

w̄
, w̄ :=

∑n
i=1 wi,

Unew =

n∑
j=1

w̃j

(
Bj + bjb

T
j

)
.

For unweighted data (wj=1), this reduces to Unew = 1
n

∑
j(Bj + bjb

T
j ).
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Extend to General Case with K>1 and penalty

ED with penalty

Add a shape penalty on U ; with the IW penalty and scale parameter s, the
M-step maximizes

E
[
ϕED(U ,Θ;w)

]
− ρIW

λ (U/s).

Closed-form update with IW penalty:

Unew =

∑n
j=1 wj

(
Bj + bjb

T
j

)
+ λs IR∑n

j=1 wj + λ
.

Under the NN penalty, the update is not closed-form.
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Extend to General Case with K>1 and penalty

FA

Rank-1 parameterization: U = uuT, u ∈ RR.
Model (weighted case): xj | u,V j ∼ NR

(
0, uuT + V j

)
.

Augmentation: aj ∼ N(0, 1), and xj | aj ,u,V j ∼ NR(aju,V j).
E-step (posterior of aj | xj):

µj = σ2
j u

TV −1
j xj , σ2

j =
1

1 + uTV −1
j u

.

M-step (closed form with weights wj):

unew =

 n∑
j=1

wj(µ
2
j + σ2

j )V
−1
j

−1 n∑
j=1

wj µj V
−1
j xj

 .
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Extend to General Case with K>1 and penalty

Updating the Scaling Parameter

Update the scale s by maximizing the s-dependent part of the objective:

snew = arg max
s>0

− ρ(U/s).

Closed-form solutions:
IW penalty:

snew =
R

tr(U−1)
.

NN penalty:

snew =

√
tr(U)

tr(U−1)
.
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Extend to General Case with K>1 and penalty

Overview of the Algorithm
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Simulations

Simulations
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Simulations

Simulation Settings

1 Goal:
Compare algorithms for updating Uk (TED, ED, FA).
Assess benefits of penalties (IW/NN) and constraints (e.g., rank-1).
Study sensitivity to the number of mixture components K.

2 Data generation:
Generate “true” means θ1, . . . , θn ∈ RR from the mixture prior with K
components.
Observed data: xj ∼ NR(θj ,V j) independently for j = 1, . . . , n.
Create separate test sets (xtest

j ,θtest
j ) to evaluate generalization.

In the main comparisons, use homoskedastic noise V j = IR for all j.
Set K = 10 with uniform mixture weights π1 = · · · = π10 = 1/10.

3 Two scenarios:
Scenario 1: Hybrid covariances.
Scenario 2: Rank-1 covariances.
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Simulations

Scenarios

1 Scenario 1: Hybrid covariances:
Construct K = 10 prior covariances by combining canonical and random
draws.
3 canonical matrices:

U1 = 5 e1eT
1 (“singleton” in first coordinate)

U2 = 511T (equal means across dimensions)
U3 = 5 IR (independent effects)

Remaining 7 matrices sampled from an inverse-Wishart.
2 Scenario 2: Rank-1 covariances:

Use 5 coordinate “spike” covariances: Uk = 5 ekeT
k for k = 1, . . . , 5.

Remaining 5 are random rank-1: Uk = ukuT
k with uk ∼ NR(0, IR).

Maintains V j = IR to focus on method differences.
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Simulations

Dataset sizes and evaluation

Two regimes:
Large-n/low-R: n = 10,000, R = 5.
Small-n/high-R: n = 1,000, R = 50.

Fit on training data; evaluate on both training and held-out test sets.
Compare accuracy of inferences (e.g., effect estimation), and computational
efficiency.
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Simulations

Comparison of convergence

Convergence

Warm-start: Prefit 20 iterations of
ED
Without penalty: TED and FA rise
to near-optimal values within a few
iterations; ED is much slower.
With IW penalty: TED still
fastest; gap to ED narrows but
remains.
Small n/R: methods can converge
to different local optima.
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Simulations

Aggregate results over 100 simulations

Without penalty(A-D): TED
achieves better solutions than FA
and ED.
With IW penalty: TED and ED
are similar

Question: The improved performance of
TED is due to faster convergence or
better solutions?
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Simulations

Can TED rescue ED?

Protocol: running TED initialized to the ED solution (“ED+TED”)
if ED is simply slow to converge, then ED+TED will be similar to TED.
If ED converges to a poorer local optimum, then TED will not rescue it, and
ED+TED will be similar to ED.

Even 100,000 ED iterations often fall short of 1,000 TED updates (avg gap �
40.6 loglik units).
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Simulations

Comparison of the penalties and constraints

Metrics used:
Power vs false sign rate (FSR): better curves have higher power at a given
FSR.
Empirical FSR among tests with l̂fsr < 0.05; well-calibrated methods have
small FSR (ideally below 0.05).
Accuracy of predictive distribution on test sets (approximate Kullback–Leibler
divergence):

1

ntest

ntest∑
j=1

log
{
p(xtest

j | U true,πtrue,V test
j )

p(xtest
j | Û , π̂)

}
.
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Simulations

Hybrid scenario

small n/R: both IW and NN
improve power vs. FSR and the
accuracy of predictive distribution.
TED and ED are similar in this
scenario.
rank-1 constraint: performance is
very poor.
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Simulations

Rank-1 scenario

predictive distribution: The
predictive distribution is improved.
rank-1 constraint performs very
poor in other metrics because the
lfsr do not differ across conditions.
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Simulations

Robustness to mis-specifying the number of mixture
components

In previous simulations, models used the true number of components K.
In practice K is unknown. Overstating K could cause overfitting.
Setup: reuse the same 80 data sets (true K = 10); fit with K ∈ {2, . . . , 128}.
Evaluate:

Predictive accuracy on test data (smaller K–L divergence is better).
Average FSR among tests with l̂fsr < 0.05 (smaller is better).
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Simulations

Hybrid scenario
Rank-1 scenario
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Simulations

Results

1 Results: large n/low R:
Most methods are robust to increasing K up to 128.
Fits with rank-1 constraints degrade when K is very large.
Penalized and unpenalized methods behave similarly in this regime.

2 Results: small n/high R:
Unpenalized methods worsen as K grows (higher FSR, worse predictive K–L):
evidence of overfitting.
Penalized methods (IW/NN) remain stable; performance does not
substantially decline with larger K.

3 Penalties help:
Penalization effectively selects/merges components:

Fewer “important”components where π̂k > 0.01.
Some Uk are estimated to be very similar.

Shrinkage toward the identity matrix keeps redundant components near
negligible weight.
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Real Data Analysis

Real Data Analysis
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Real Data Analysis

Analysis of genetic effects on gene expression in 49 human
tissues

Goal: apply the EBMNM model to multi-tissue cis-eQTL analysis (GTEx).
Prior work: two-stage EBMNM analysis in (Urbut et al., 2019).
Here we focus on estimating prior covariances (stage 1).
Compare matrix-update algorithms (TED vs ED), initializations (specialized
vs random), and penalties (none vs IW).
Analyzed z-scores from association tests between gene expression and
genotypes across tissues.
After filtering: n = 15,636 genes, R = 49 tissues.
Set measurement covariances to a common correlation matrix: Vj = C.
Select, per gene, the variant with the largest magnitude z-score across tissues
(as in (Urbut et al., 2019)).
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Real Data Analysis

Model fitting setup

Mixture size: K = 40 components (chosen to match number produced by
specialized init).
Initialization:

Specialized init from (Urbut et al., 2019) (rank-1–heavy, subspace-preserving
under ED).
Simple random init as a baseline.

Algorithms: TED and ED; penalties: none or IW (with λ = R).
Stopping: difference in (penalized) log-likelihood < 0.01 or 5,000 updates.
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Real Data Analysis

Convergence and fit quality

Without penalty: specialized init + TED achieves the best fits quickly; ED
with random init is slower and worse.
With IW penalty: gaps narrow; TED remains competitive or better, and
converges in fewer iterations.
Specialized init improves fit quality vs random init but adds substantial
computation time.
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Real Data Analysis

Cross-validation results

5-fold CV: train on 80% genes, evaluate test-set log-likelihood on 20%.
Penalty (IW) consistently improves test-set performance.
Specialized init further improves test-set log-likelihood vs random init, but
with notable overhead.
Among 8 pipelines (TED/ED × init × penalty), ED with no penalty and
specialized init performs worst on test sets.
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Real Data Analysis

Estimated priors and sharing patterns

New penalized pipeline produces more evenly distributed mixture weights
(more “important”components).
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Real Data Analysis

Old
Top covariance components capture
broad tissue-sharing and
tissue-specific patterns (e.g., brain
clusters).
New pipeline learned a greater
variety of tissue-specific patterns

New
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R package

R package
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R package

R package
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Conclusion

Conclusion

jiahuiren8-c (@my.cityu.edu.hk) City University of Hong Kong Journal Club Presentation 2025.11 52 / 54



Conclusion

Conclusion

Conclusion

TED provides fast, stable covariance
updates; ED can be slow and
initialization-sensitive.
Shape penalties (IW/NN) improve
calibration and test performance,
especially when n is small and R is
large.
With penalties, using a relatively
large K is robust; without penalties,
large K can overfit.
Real data (GTEx): penalized
methods and TED yield better or
comparable fits with fewer iterations
and more interpretable priors.
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Conclusion
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