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Motivation

@ Suppose we are interested in estimating the sharing of genetic effects across
different conditions (e.g., assessing the effects of many expression
quantitative trait loci (eQTLs) across many tissues).

@ Simplest way: analyzing each condition separately. But it would fail to
exploit the sharing or similarity of effects across conditions.

@ Motivates consideration of multivariate approaches to multiple testing and
effect size estimation.
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Introduction

Background: Empirical Bayes Framework-mash

Goal: Eestimates effects of many units (n) in many conditions (R)
Model Settings:

o Letx; € RE be the observed vectors

o Let 6; € R” be the true vectors

o Likelihood: Z; | 0]‘, Vj ~ NR(OJ‘, Vj),j =1,...,n

Prior: 8; ~ S 1 S35 w0 N(0,w,Uy), where 7w € Si € RE(
K-dimensional simplex) is the set of mixture proportions , w; is a scaling
coefficient corresponds to a different effect size, U := {U1,...,Uk} denotes
the full collection of covariance matrices.
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Background: mash framework

MASH is desgined to
@ Estimate 7 and U by maximizing the likelihood of the observed data
@ Estimate U/ by maximum-likelihood on a subset of the data (using Exteme
Deconvolution algorithm)
@ Estimate 7 by maximizing the likelihood from all the data (using fast
optimization algorithms)
@ Compute posterior distribution p(8;|x;, 7, U,V ;)

However, in the first step that estimates U, several challenges were presented.
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Introduction

mash limitations

@ The Extreme Deconvolution (ED) algorithm can be slow to converge
@ The results ot ED are often sensitive to initalization

© The estimated covariance matrices can be quite unstable when R is large
relative to n

Therefore, the authors proposed a new method called "Truncated Eigenvalue
Decomposition” (TED) and use some regularization schemes(penalty function)
to improve the estimation of U, and TED also converges much faster than ED.
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Introduction

Preliminaries: Reformulation

Scale invariance requires

2 2 ;
0;(sz1,...,5Cy, s°V1,...,5°V,) = s0(x1,...,%n, V1,...,V,).

for the penalty function, it is required that p(U) = p(sU) for any s > 0, therefore
consider:

pU) = minp(U/s)

for any s > 0.
The penalty function p(U) is designed to penalize the "shape” rather than
"scale" of the covariance matrices.
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Introduction

The Empirical Bayes Multivariate Normal Means
Model(EBMNM)

@ Observed vectors: x; € R’ are independent, noisy, normally-distributed
measurements of underlying true values 6; € R¥

.’Bj|0jNNR(0j7Vj),j:1,...,TL (1)

, where V'; € P} is assumed to be known and invertible.

@ Assume the unknown means are independen and identically distributed draws
from a mixtrue of zero-mean multivariate normals:

K
OjNZﬂkNR(oj;O,Uk> (2)
k=1

, where 7 € Sy C R¥( K-dimensional simplex) is the set of mixture

proportions , U := {U1, ..., Uk} denotes the full collection of covariance
matrices. The w are absorbed in the U because the penalty function is scale
invariant.
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Introduction

The Empirical Bayes Multivariate Normal Means
Model(EBMNM)

o If V; =V forall j =1,...,n, we refer this as the "homoscedastic" case.

o If V; #V for some j =1,...,n, we refer this as the "heteroscedastic”
case.
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Introduction

The Empirical Bayes Multivariate Normal Means
Model(EBMNM)

The marginal distribution of x; is:

K

plaj|m,U) = ZWkNR(-’L'j;O, U,+V;) 3)
k=1

And the log-likelihood is:

j=1 k=1

n K
Um,U) = Zlog (Z T Nr(;;0, U + Vj)) (4)
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Introduction

The Empirical Bayes Multivariate Normal Means
Model(EBMNM)

The EB approach fitting the model in two stages:

@ Estimate w and U by maximizing a penalized log-likelihood:
K
(7, U) = arg max ( Z (Uk/sk) > (5)
weSK, UEPE ¥, 5>0 k1

@ Compute posterior distribution

Poost(6;) := (8|2, 7,U) o p(x;10;)p(8;|%,U) (6)
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Penalty Function
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Penalty Function

Two different penalties that have been previously used for covariance
regularization:

@ The "inverse Wishart” (IW) penalty:

() = S {log U] + (U ))

N ™)
= 23 Mloge, +1/er)
i=1
@ The "nuclear norm” (NN) penalty:
PAN(U) := MO.5[[U |l + 0.5][U |}
(8)

A R
=5 > (0.5¢; +0.5/¢;)
=1

where e; are the eigenvalues of U and U™, and ||.||. is the nuclear norm,
A > 0 controls the strength of the penalty.
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Constraints
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Constraints

As an alternative to penalized estimation of U, the authors also consider
estimating U under different constraints:

@ A scaling constraint: Uy, = ¢, Uy, for some chosen Uy € P;g
@ A rank-1 constraint: U, = ukug, for some uy, € RE
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Introduction to TED, FA and ED

Introduction to TED, FA and ED
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A simpler case for K=1 and no penalty

For easily to understanding the three methods, we consider the simpler case for
K=1 and no penalty.

@ When K =1, the prior is: 8; ~ Ng(6,;0,U), the model is:
:cj|U~NR(O,U+Vj),j=1,...,n (9)

@ Goal: compute the maximum likelihood estimate of U

n

U= argmaleogNR(O, U+V;) (10)
UGP{Er j=1
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Truncated Eigenvalue Decomposition (TED)

@ Special case: homoscedastic noise V'; = I'g.

@ Sample covariance:
1 n
S :=— E xjz].
n 4 7
Jj=1

Naive idea U = § — I may not be PSD.
@ TED sets negative eigenvalues of (S — I') to zero:

@ General case V; =V (constant across j): whiten
V =RR"' ;=R 'z;, R 'z;|0, ~Np(R '0;,,I + R 'UR)

Apply TED to &; to get ﬁ/ and then back-transform

U—=RU R".
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Extreme Deconvolution (ED)

EM algorithm for the K =1 model using data augmentation:

0; ~ Ng(0,U), x;|0; ~Ng(0;,V;).

E-step: posterior mean and covariance of 8; given current U:

b =UU+V;)'z;, B;=U-UU+V,)'U.

M-step: update covariance

U = %zn:(Bﬁbjb;f).

j=1

Guarantees monotone ascent of the likelihood and convergence to a
stationary point.
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Factor Analysis (FA)

@ Rank-1 constraint on covariance: U = uuT with u € R,
o Data augmentation:

ajNN(()?l)? Z 5 |U,Vj,ajNNR((lju, Vj)

o EM updates:

1
2, Tyr—1 2
i =o;u Vi x;, 0= —
J J J 1 + uij lu
—1
n n
new __ —1 —1

u = E H’J +0’ ‘/vJ E Wy Vj T

j=1 j=1
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Extend to General Case with K>1 and penalty
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Extend to General Case with K>1 and penalty

Derivation of the EM algorithm for fitting the EBMNM
model

o First, they introduce a latent variable z; for each j =1,...,n. Each z; is a
binary vector of length K indicating the component k from which x; arose.

e Following Neal and Hinton (1998), the expected value of zjy, is:
TUCNR(O, Uk + V])
sy mNe(0, Ui+ V)

(11)

wik = Elzjx] =

@ The M-step for =:

1 n
T = — E ; 12
=0 j=1 o (12
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TED without penalty

@ Special case V; = I ; define weighted covariance

n n
. . _ wj
S = z;wj xx], W= Ej’ W= Zwl
J=
o Objective (dropping U-independent terms):
0 e
(U w) = —§{log|U+I| +ur[(U+T) s]}.

@ Closed-form solution:

If § = Ldiag(dy,...,dg)L" then

U = L diag (max{d, — 1, 0})11 L.

o If V; =V # I (constant), whiten ; = R™'x; with V.= RRT, apply the
above on &, then back-transform.
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TED with penalty

@ For IW/NN penalties there is no closed form, use the numerical method:
o With separable penalty p(U/s) = Zle pr(er/s), write

S = Ldiag(dy,...,dg)L".
@ Optimize eigenvalues independently:

Y llog(er + 1) +
argmax —-— ogle
RN er+1

€r

= pr(er/s).

o Update

U = L diag(és,...,ér) L".
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ED without penalty

@ Weighted complete-data objective:

¢ED(U,@;'LU) = ij logp(acj,Oj ‘ []7 VJ)
j=1

E-step (posterior of 6, given current U):

b =UU+V;)'z;, B;=U-UU-+V,;)"'U.

M-step (closed form, no penalty). With normalized weights

n

For unweighted data (w; =1), this reduces to U™ = 1 = 2.i(Bj b;b}).
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ED with penalty

@ Add a shape penalty on U; with the IW penalty and scale parameter s, the
M-step maximizes

E[oP(U, 0:w)] — pN'(U/s).
@ Closed-form update with IW penalty:
Z?:l U}j (BJ + b]bJT> + )\S IR
Z?:l w] + )\ '

@ Under the NN penalty, the update is not closed-form.

Unew —
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Extend to General Case with K>1 and penalty

Rank-1 parameterization: U = uu®, u € RE.
Model (weighted case): @; | u,V; ~ Ng(0, uu™ + V).
Augmentation: a; ~ N(0,1), and z; | a;,u,V; ~ Ng(a;u, V).

E-step (posterior of a; | x;):

_ 2. Ty -1 2 _
pj = o;u Vi x;, o; =

M-step (closed form with weights w;):

-1

n

-1

u" = ij(M?JrUJZ)Vj
j=1
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Updating the Scaling Parameter

@ Update the scale s by maximizing the s-dependent part of the objective:

" = argmax —p(U/s).
s>0
@ Closed-form solutions:
o IW penalty:
Snew _ R

T ow(UTY’
o NN penalty:

new tr(U)

tr(U™1)
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Overview of the Algorithm

Input: Data vectors z; € RE and correspoding covariance matrices V; € PE’ j=1,...,n; K, the
number of mixture components; initial estimates of the prior covariance matrices
U={U,..., Uk}, U,€ Pg’k, k=1,...,K; initial estimates of the scaling parameters
s={sq,...,Sg} € RX; initial estimates of the mixture weights 7 € Sg.

Output: U, .

repeat

for j + 1ton do
for k < 1to K do
Update Wik using (24).
end
end
for k < 1 to K do
T 4= Do Wik /n
Uy, - argmaxy; _ otk d(Uswy) — p(U/s)
R
> Note that some algorithms compute this argmax inexactly.
sk < argming 5, o p(Ug/s)
end

until convergence criterion is met;
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Simulations
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Simulation Settings

@ Goal:
e Compare algorithms for updating U (TED, ED, FA).
o Assess benefits of penalties (IW/NN) and constraints (e.g., rank-1).
e Study sensitivity to the number of mixture components K.

@ Data generation:

o Generate “true” means 61,..., 60, € RT from the mixture prior with K
components.
Observed data: x; ~ Ng(0;,V ;) independently for j =1,...,n.
Create separate test sets (™, 05) to evaluate generalization.
In the main comparisons, use homoskedastic noise V; = I'r for all j.
Set K = 10 with uniform mixture weights 7 = --- = w10 = 1/10.

@ Two scenarios:

e Scenario 1: Hybrid covariances.
e Scenario 2: Rank-1 covariances.
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Scenarios

© Scenario 1: Hybrid covariances:

e Construct K = 10 prior covariances by combining canonical and random
draws.
e 3 canonical matrices:

o Ui =5eief (“singleton” in first coordinate)
e U3 =5117T (equal means across dimensions)
e U3z =51g (independent effects)

e Remaining 7 matrices sampled from an inverse-Wishart.
@ Scenario 2: Rank-1 covariances:

o Use 5 coordinate “spike” covariances: Uy, = 5eref for k=1,...,5.
o Remaining 5 are random rank-1: Uy = uiuy with ur ~ Ng(0,IRg).
e Maintains V; = IR to focus on method differences.
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Dataset sizes and evaluation

@ Two regimes:
e Large-n/low-R: n = 10,000, R = 5.
e Small-n/high-R: n = 1,000, R = 50.

o Fit on training data; evaluate on both training and held-out test sets.

o Compare accuracy of inferences (e.g., effect estimation), and computational
efficiency.
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Simulations

Comparison of convergence

log-likelihood differennce

penalized log-likelihood difference

A large n/R, without penalty

B small /R, without penalty °

Warm-start: Prefit 20 iterations of

=1 P ED
| € o — . :
g | @ Without penalty: TED and FA rise
| - to near-optimal values within a few
o - ol - iterations; ED is much slower.
T e e o ; oo ke 2w . )
foraton o With IW penalty: TED still

C large n/R, with penalty

D small /R, with penalty

fastest; gap to ED narrows but

8
g remains.
3
£ e Small n/R: methods can converge
g to different local optima.

=z 1.] =

P SRy s : [
iteration iteration
Convergence
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Aggregate results over 100 simulations

number of simulations

number of simulations

number of simulations

40+

60
50|
40|
30
20

10+

0l ,--I ._- -

A large /R, no penalty, TED vs. FA

number of simulations

B small /R, no penalty, TED vs. FA

o |
. .II|I|I||||

04

-50 o 50 100 150 200 -1,000-500 0 500 1,000 1,500 2,000
loglik(TED) - loglik(FA) loglik(TED) - loglik(FA)
C large n/R, no penalty, TED vs. ED D small n/R, no penalty, TED vs. ED
1 - 20
] s
] s %
] E]
] 5
1 3 2 1
] 5 ]
1 ] H ]
|| N |
- Hwe __ = ol il
-50 ] 50 100 150 200 -1,000 -500 0 500 1,000 1,500 2,000
loglik(TED) - loglik(ED) loglik(TED) - loglik(ED)
E large n/R, with penalty, TED vs. ED F small n/R, with penalty, TED vs. ED
80 1
2 50
S
L; 40 A
E
@ 304
s
5 20
2
E
2 10
JR— -

-20 -10 o 10 20 30 40
loglik(TED) - loglik(ED)

-400 -200 0 200

400
loglik(TED) - loglik(ED)

600

e Without penalty(A-D): TED

achieves better solutions than FA

and ED.

o With IW penalty: TED and ED

are similar

Question: The improved performance of
TED is due to faster convergence or

better solutions?
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Can TED rescue ED?

A large /R, no penalty B small /R, no penalty
as
230
S
Ex
S5
210 I
s
o) ——m _-I l__. ol = A _
w0 20 0 2 W -0 40 20 0 200
0giK(TED) - gik(ED+TED) 1ogik(TED) - logik(ED+TED)
C large /R, with penalty D small /R, with penaly
50
50
gw z
3 g%
g £
% 20 K]
H e
H ]
S ' S
o) - mem AMlE _Em. = od oo - .
——— ==
-1 0 0 2 400 20 0 200 40 80
I0gik(TED) - ogik(ED+TED) ogik(TED) - loglik(ED+TED)

@ Protocol: running TED initialized to the ED solution (“ED+TED”)
o if ED is simply slow to converge, then ED+TED will be similar to TED.

o If ED converges to a poorer local optimum, then TED will not rescue it, and
ED+TED will be similar to ED.

@ Even 100,000 ED iterations often fall short of 1,000 TED updates (avg gap
40.6 loglik units).
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Simulations

Comparison of the penalties and constraints

@ Metrics used:
o Power vs false sign rate (FSR): better curves have higher power at a given

FSR.
o Empirical FSR among tests with Ifsr < 0.05; well-calibrated methods have

small FSR (ideally below 0.05).
e Accuracy of predictive distribution on test sets (approximate Kullback—Leibler

divergence):
Mtest test true true test
log plz™ | U™, = A,V]-) .
p(m;est ‘ U,Tr)

n
test =1
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ulations

A Power vs. FSR, large /R B Power vs. FSR, small /R
08

K-L divergence

010
FSR

o 005 015

C FSRaat lfsr < 0.05, large /R

010
FSR

o 005 o015

D FSR at lfsr < 0.05, small n/R

e small n/R: both IW and NN
improve power vs. FSR and the
S accuracy of predictive distribution.
iz o TED and ED are similar in this
w scenario.
@ rank-1 constraint: performance is

[T+

very poor.

S s
F OSSN
oS8 & ¢
<&

E Predictive distribution, large n/R

257

Hybrid scenario
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Simulations

K-L divergence

A Power vs. FSR, large /R

B Power vs. FSR, small /R

power

0 005 0w o015 0 0 005 oM o015 0
FSR FSR
CFSRatlfsr <0.05, large R D FSR atIfsr < 0.05, small /R
06 T N
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o5 - == g
020 B
04 i
05 T g 015
T 010

: e o0l = = %
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PR R PP

& &

0030 25
0025 20 T
. =
oaeo T g | L .5
- gis{ = =
0015 ; : ] -
T T 10
0010 g T s
0T gB: S &
= = 0s =
0 3
S S S B
R R & 8 &S S S
& & @ ¢ AP IR
& &

Rank-1 scenario
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o predictive distribution: The
predictive distribution is improved.

@ rank-1 constraint performs very
poor in other metrics because the
lfsr do not differ across conditions.
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Simulations

Robustness to mis-specifying the number of mixture
components

In previous simulations, models used the true number of components K.
In practice K is unknown. Overstating K could cause overfitting.

Setup: reuse the same 80 data sets (true K = 10); fit with K € {2,...,128}.
Evaluate:

e Predictive accuracy on test data (smaller K—L divergence is better).
o Average FSR among tests with lfsr < 0.05 (smaller is better).
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Simulations

average FSR

average K-L divergence

0.4

°
~
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A FSR at Ifsr < 0.05, large n/R

B FSR at Ifsr < 0.05, small n/R
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Rank-1 scenario
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Results

@ Results: large n/low R:
e Most methods are robust to increasing K up to 128.
o Fits with rank-1 constraints degrade when K is very large.
o Penalized and unpenalized methods behave similarly in this regime.
@ Results: small n/high R:
o Unpenalized methods worsen as K grows (higher FSR, worse predictive K—L):
evidence of overfitting.
e Penalized methods (IW/NN) remain stable; performance does not
substantially decline with larger K.

© Penalties help:
o Penalization effectively selects/merges components:

o Fewer “important” components where 7, > 0.01.
@ Some U}, are estimated to be very similar.

e Shrinkage toward the identity matrix keeps redundant components near
negligible weight.
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Real Data Anal

Real Data Analysis
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Real Data Analysis

Analysis of genetic effects on gene expression in 49 human
tissues

Goal: apply the EBMNM model to multi-tissue cis-eQTL analysis (GTEXx).
Prior work: two-stage EBMNM analysis in (Urbut et al., 2019).
Here we focus on estimating prior covariances (stage 1).

Compare matrix-update algorithms (TED vs ED), initializations (specialized
vs random), and penalties (none vs IW).

@ Analyzed z-scores from association tests between gene expression and
genotypes across tissues.

o After filtering: n = 15,636 genes, R = 49 tissues.

@ Set measurement covariances to a common correlation matrix: V; = C.

o Select, per gene, the variant with the largest magnitude z-score across tissues
(as in (Urbut et al., 2019)).
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Model fitting setup

Mixture size: K = 40 components (chosen to match number produced by
specialized init).

Initialization:

o Specialized init from (Urbut et al., 2019) (rank-1—heavy, subspace-preserving
under ED).
e Simple random init as a baseline.

Algorithms: TED and ED; penalties: none or IW (with A = R).
Stopping: difference in (penalized) log-likelihood < 0.01 or 5,000 updates.
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Convergence and fit quality

Ano penalty Bw penalty

3
)
8
8
I

40,000
random
initialization
— ED
— TED

20,000

20,000

log-likelihood difference

specialized
initialization

°
I

penalized log-likelihood difference

T T T T T T T T
0 1000 2,000 3,000 0 200 400 600 800

iteration iteration

@ Without penalty: specialized init + TED achieves the best fits quickly; ED
with random init is slower and worse.

o With IW penalty: gaps narrow; TED remains competitive or better, and
converges in fewer iterations.

@ Specialized init improves fit quality vs random init but adds substantial
computation time.
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Real Data Analysis

Cross-validation results

Cross-validation results on the GTEXx data. The “mean relative log-likelihood” column gives the increase in the
test-set log-likelihood over the worst log-likelihood among the 8 approaches compared, divided by total number
of genes in each test set. The “average number of iterations” column gives the number of iterations performed
until the stopping criterion s met (log-likelihood between two successive updates less than 0.01, up to a
maximum of 5,000 iterations), averaged over the 5 CV folds.

initialization algorithm penalty log-likelihood

‘mean relative average number

of iterations

specialized
specialized
specialized
specialized
random
random
random
random

ED
ED
TED
TED
ED
ED
TED
TED

zizizizd

0.00
121
0.88
119
0.25
0.86
0.20
0.94

1,101
1,083
1,054
412
5,000
1,377
450
584

o 5-fold CV: train on 80% genes, evaluate test-set log-likelihood on 20%.

@ Penalty (IW) consistently improves test-set performance.

@ Specialized init further improves test-set log-likelihood vs random init, but

with notable overhead.

@ Among 8 pipelines (TED/ED x init x penalty), ED with no penalty and
specialized init performs worst on test sets.
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Estimated priors and sharing patterns

M previous analysis pipeline
new analysis pipeline

N
8

5

@

number of mixture components

0 Jl I I J
0 0.1 02

. .3 0.4
mixture weight

@ New penalized pipeline produces more evenly distributed mixture weights
(more “important”components).
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Real Data Analysis

component 1 component 2 component 5
: component oo woigh <0152 weight =0.131 welght= 0073
g~ 0461 o= 0296 woght =003 scale = 0.7 scale= 5. scalo= 10.94

—
o o e .
: -
-
,
— s —
sz, o, oz, I
Olid . .

L

@ Top covariance components capture
broad tissue-sharing and
tissue-specific patterns (e.g., brain = wmwe e —
clusters).

Soaie - 754 Soain - 701

@ New pipeline learned a greater
variety of tissue-specific patterns

New
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R package

R package
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R package

14

devtools: :install("/Users/jiahui/Downloads/
arXiv-2406.08784v1/anc/
supplementary_code/udr_0.3-153",
dependencies = TRUE, upgrade = "never")
libraryCudr)

set.seed(1)
V <- rbind(c(0.8, 0.2),
c(0.2, 1.5))
U <- listCnone = rbind(c(0,0), c(0,0)),
shared = rbind(c(1.0,0.9), c(0.9,1.0)))
w <- c(0.8, 0.2)

X <- simulate_ud_data(n = 2000, w =w, U =U, V =1V)

fit <- ud_init(X, V = V) # default prior: 2 scaled, 4 rank-1, 8 unconstrained
fit <- ud_fit(fit, control = list(version = "Rcpp", maxiter = 50))

logLik(fit)

summary(fit)

plot(fit$progress$iter,
max(fit$progress$loglik) - fit$progress$loglik + 0.1,
type = "1", col = “", lwd = 2, log = "y",
xlab = "iteration", ylab = "dist to best loglik")
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Conclusion

Conclusion
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Conclusion

Conclusion

constraints on U @ TED provides fast, stable covariance
none rank-1 updates; ED can be slow and
initialization-sensitive.

algorithm hom. het. hom. het.

B v v @ Shape penalties (IW/NN) improve

EA v S v calibration and test performance,
TED v v especially when n is small and R is
large.
Conclusion o With penalties, using a relatively

large K is robust; without penalties,
large K can overfit.

@ Real data (GTEx): penalized
methods and TED yield better or
comparable fits with fewer iterations
and more interpretable priors.
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